3 research outputs found

    Evolutionary multi-objective optimization of trace transform for invariant feature extraction

    Get PDF
    Trace transform is one representation of images that uses different functionals applied on the image function. When the functional is integral, it becomes identical to the well-known Radon transform, which is a useful tool in computed tomography medical imaging. The key question in Trace transform is to select the best combination of the Trace functionals to produce the optimal triple feature, which is a challenging task. In this paper, we adopt a multi-objective evolutionary algorithm adapted from the elitist non-dominated sorting genetic algorithm (NSGA-II), an evolutionary algorithm that has shown to be very efficient for multi-objective optimization, to select the best functionals as well as the optimal number of projections used in Trace transform to achieve invariant image identification. This is achieved by minimizing the within-class variance and maximizing the between-class variance. To enhance the computational efficiency, the Trace parameters are calculated offline and stored, which are then used to calculate the triple features in the evolutionary optimization. The proposed Evolutionary Trace Transform (ETT) is empirically evaluated on various images from fish database. It is shown that the proposed algorithm is very promising in that it is computationally efficient and considerably outperforms existing methods in literature

    Evolutionary Multiobjective Image Feature Extraction in the Presence of Noise

    No full text
    A Pareto-based evolutionary multiobjective approach is adopted to optimize the functionals in the trace transform (TT) for extracting image features that are robust to noise and invariant to geometric deformations such as rotation, scale, and translation (RST). To this end, sample images with noise and with RST distortion are employed in the evolutionary optimization of the TT, which is termed evolutionary TT with noise (ETTN). Experimental studies on a fish image database and the Columbia COIL-20 image database show that the ETTN optimized on a few low-resolution images from the fish database can extract robust and RST invariant features from the standard images in the fish database as well as in the COIL-20 database. These results demonstrate that the proposed ETTN is very promising in that it is computationally efficient, invariant to RST deformation, robust to noise, and generalizable

    Trade-off between computational complexity and accuracy in evolutionary image feature extraction.

    No full text
    corecore